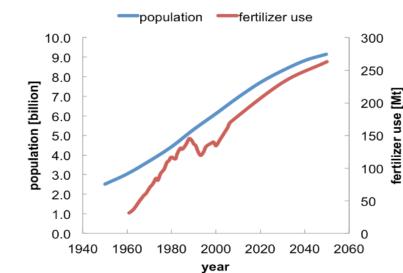
Run4Life project. Current results and exploitation pathways

Nicolás Morales Pereira

Run4Life Project Manager

17th December 2020, ULTIMATE Meeting on Nutrient Recovery

The Run4Life project receives funding from the EU Horizon 2020 Research and Innovation programme, under G.A. No 730285.

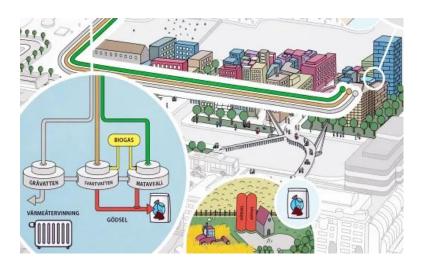

Context

- Global demand for food ↑
- Global demand for fertilisers Λ
- Phosphorus: not renewable, localised reserves
- Nitrogen: "Fertilizer from air" but highly energy demanding

Nutrients in wastewater (WW)

A potential pollutant – and important resource currently not exploited in the conventional, centralised and linear approach based in the old concept of Cloaca Maxima

world population and fertilizer use

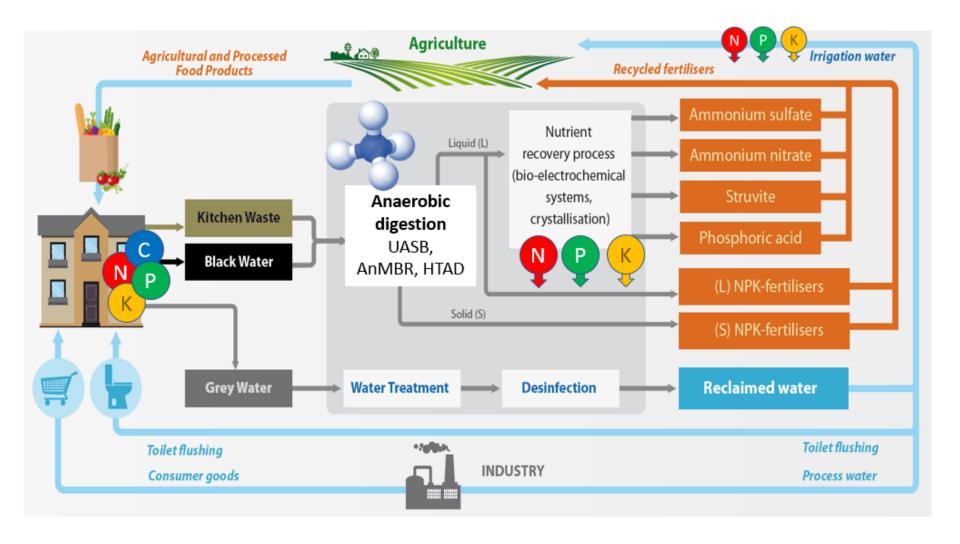


Horizon 2020, GA 730285.

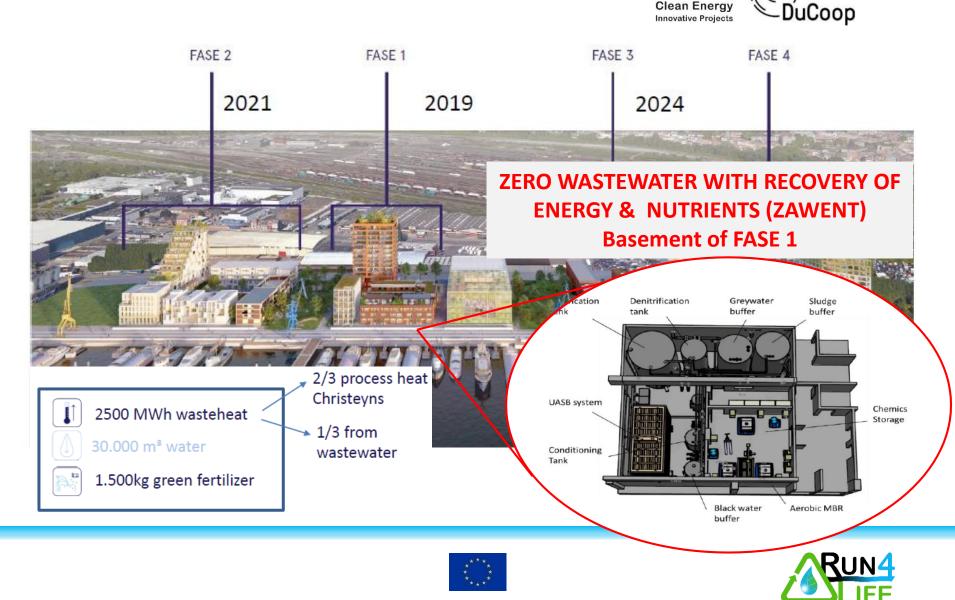
ertilize

Run4Life: decentralised resource recovery at the source

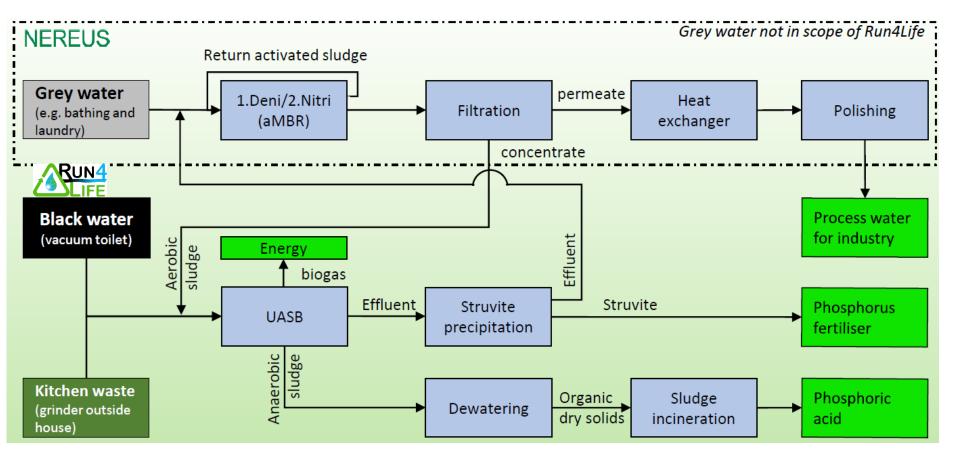
- 1. Separation at source
 - Black water (BW), kitchen waste (KW) and grey water (GW)
- 2. Technological innovations and new business models.
- 3. Break barriers to implementation: market uptake, and social and legal acceptance



Nieuwe Dokken - Ghent, Belgium (1200 p.e.)

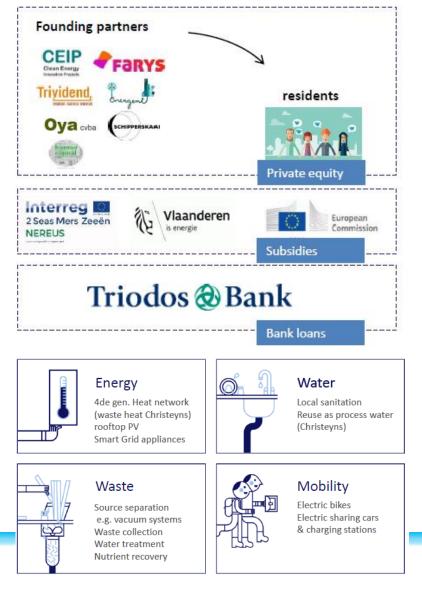


>400 Housing units+ City complex (schools, sports infrastructure etc.)


Nieuwe Dokken - Ghent, Belgium (1200 p.e.)

CEIP

Nieuwe Dokken - Ghent, Belgium (1200 p.e.)



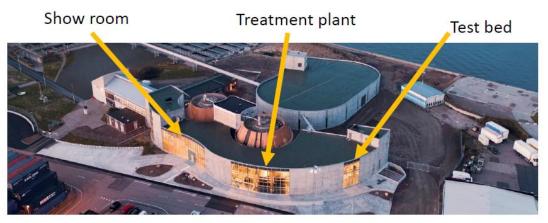
Exploitation: Cooperative business model

Nieuwe Dokken - Ghent, Belgium (1200 p.e.)

How & why a cooperative legal entity?

- > **Cooperation** with citizen participation allow for:
 - Flexible capital
 - Legal limit of 6% IRR
 - Securing fair price setting

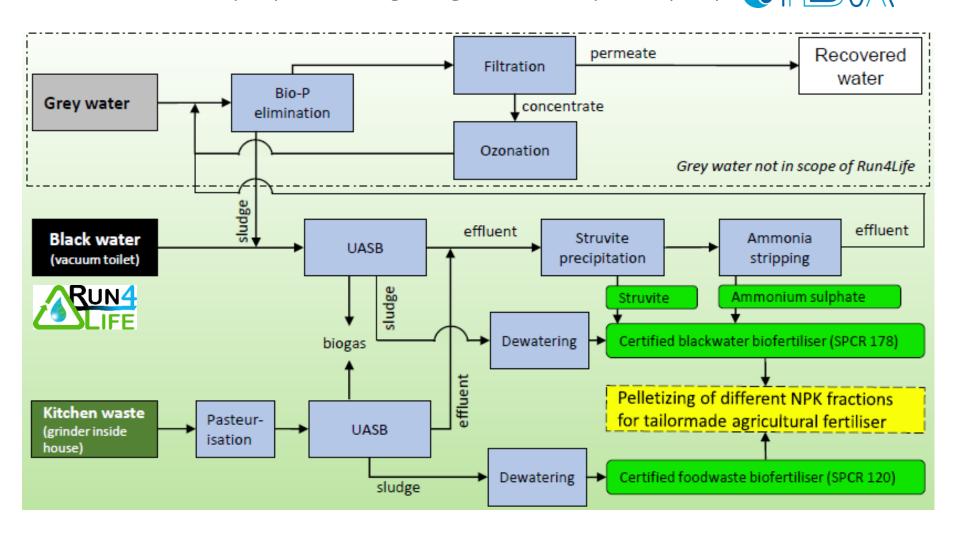
- Financial stimulus for end users (correct use of the systems)
- Governance participation by inhabitants
 - Representation in Board and General Assembly
 - Voting right in General Assembly
 - Strong involvement / ambassadors



Oceanhamnen (H+) - Helsingborg, Sweden (1800 p.e.) 🌏 🦳

- Innovative waste and wastewater management system.
- Around 320 apartments and several office buildings

Local treatment system


- <u>Reco Lab</u>: Recovery laboratory, test-bed facility
- facility • Educational showroom

Demo sites and technologies

Oceanhamnen (H+) - Helsingborg, Sweden (1800 p.e.) 🜏 🦳

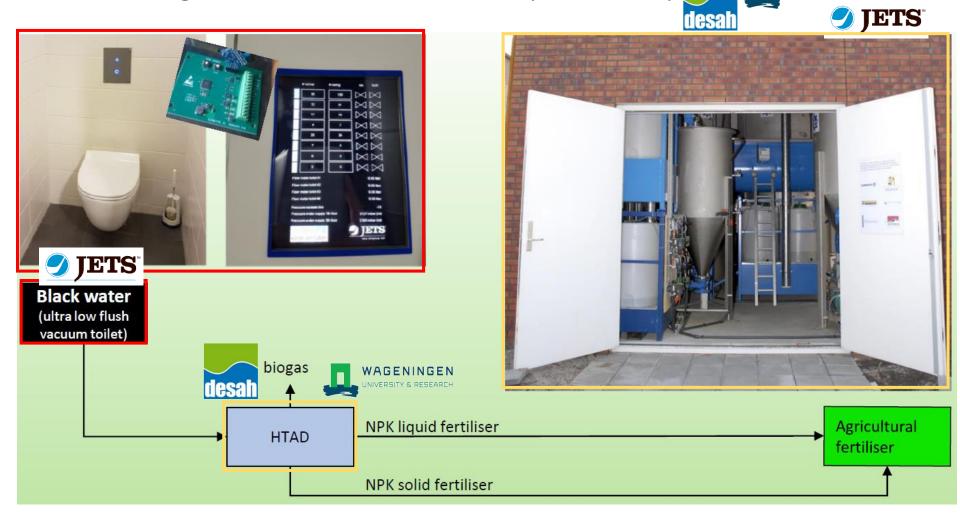
Oceanhamnen (H+) - Helsingborg, Sweden (1800 p.e.) 🜏 🦳

NPK pellet

- **Dewatered food waste sludge** from anaerobic digester (certified as biofertilizer using national certification system)
- Struvite (EU end of waste classified as a product)
- Ammonium sulphate (EU end of waste classified as a product)
- Commercial potassium chloride

Accepted by farmers in Sweden:

- The products are clean (free from heavy metals and organic pollutants)
- **Concentrated** (at least 5% of nitrogen, but preferably up to 20%)
- Spread using conventional equipment



Demo sites and technologies

Lemmerweg - Sneek, the Netherlands (32 houses)

13

WAGENINGEN

Innovations: ULF Toilets

- •Normal (gravity sewer) toilets: 4-9 L/flush
- •Conventional vacuum toilets: 0.8-1.5 L/flush
- •ULF vacuum toilets: 0.4-0.7 L/Flush

Benefits

-notable water savings
-smaller piping dimensions
-highly concentrated blackwater

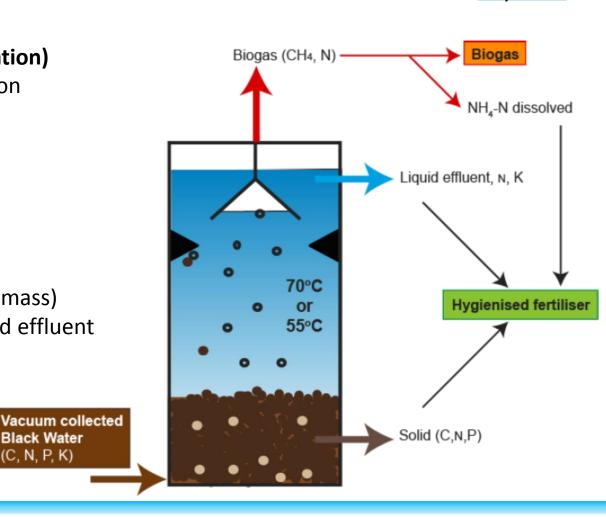
desa

> 40 g COD/L

ETS

WAGENINGEN

Innovations: (H)TAD


One step for 3 processes (innovation)

- Treatment and biogas production
- Fertiliser production
- Hygienisation

2 main fertiliser streams:

- liquid effluent ٠
- sludge ٠

Most P ends up in the sludge (biomass) Most N and K ends up in the liquid effluent

desa

Black Water C, N, P, K)

ETS

WAGENINGEN

(H)TAD reactor performance:

Parameter	Unit	Reference 35 °C	Desah 70 °C	Desah 60 °C	Desah 55 °C (ongoing)
HRT	d	11 ± 1.0	14.9 ± 5.0	10.9 ± 1.0	
OLR	gCOD/L/d	0.7 ± 0.1	1.72 ± 0.39	3.5 ± 1.1	
COD in	gCOD/L	10.1 ± 1.8	23.7 ± 2.0	41.7 ± 9.3	Ongoing
COD _T Removal	%	79.1 \pm 4.9	42.2 \pm 14.8	56.5 \pm 17.9	
Methanization	% of COD _{rem}	87.3 \pm 16.4	41.4 \pm 12.3	51.9 \pm 17.6	

- COD removal and methanization increase with decreasing T
- The balance between hygenisation and methane production seems to be around 55°C. (up to 80 % methanization at lab scale).

(H)TAD reactor performance:

Fertiliser Production

	Reference		Run4Life	
	Influent	Effluent	Influent	Effluent
	(35°C)	(35°C)	(60°C)	(60°C)
Total N (g/L)	1.4	1.3	3.8	2.9
NH4-N (g/L)	0.8	1.1	1.5	1.8
Total P (mg/L)	120	96	960	340
PO4-P (mg/L)	101	89	420	164
CARBA (CFU)	0.9	0.03	Not Detected	Not Detected
TBX E.coli (CFU)	5.9	3.6	5.5	Not Detected
ESBL (CFU)	3.9	1.2	3.9	Not Detected

ETS

WAGENINGEN

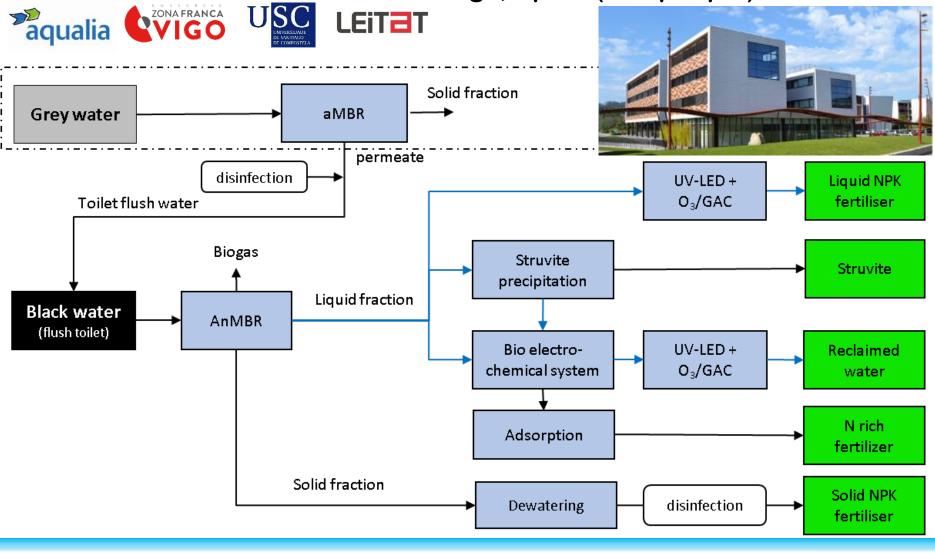
INIVERSI

desa

Full scale installations for decentralised sanitation and resource recovery

Niche market cases:

- New build districts
- High rise buildings
- Sustainable resorts
- Areas with no sewer connection / no capacity for increased sewage flow
- ULF Toilet useful if technology downstream take profit from the ultra concentration of blackwater → Recovery of energy/nutrients


Horizon 2020, GA 730285.

WAGENINGEN

desa

Demo sites and technologies

Porto do Molle Business Centre - Vigo, Spain (250 people)

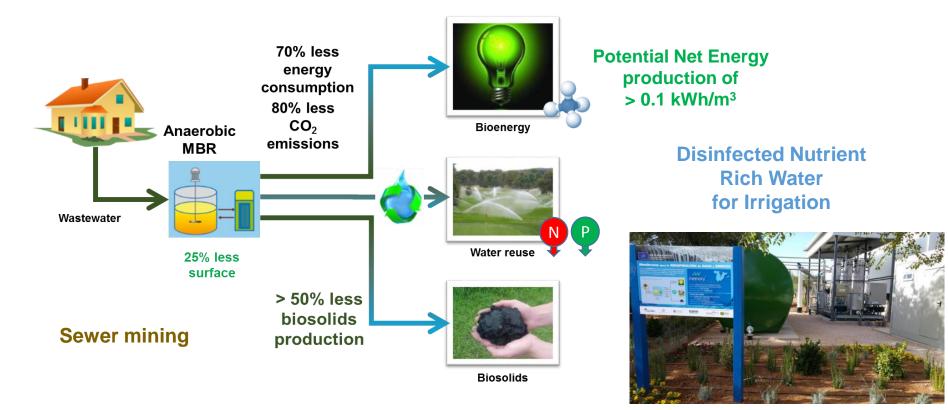
Porto do Molle Business Centre - Vigo, Spain (250 people)

AnMBR treating BW at room temperatura (25 °C).

Flow: $0.8-1.5 \text{ m}^3/\text{d}$ Stable operation:8-10 LMHCOD BW inlet: $1425 \pm 823 \text{ mg/L}$ COD removal:94 %

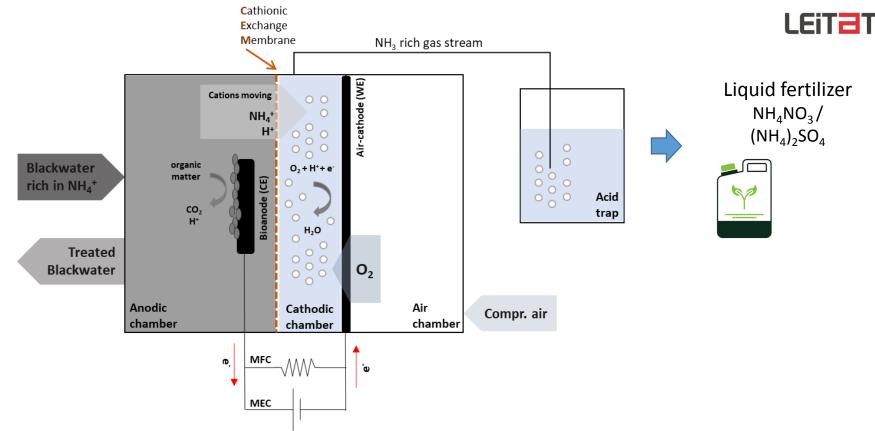
Steady state biogas production $\approx 0.25 \text{ m}^3/\text{d}$ Methane $\approx 73\%$.

Parameter	Blackwater	Treated water	
Total P (mg/L)	20 ± 10	17 ± 5	
N-NH ₄ ⁺ (mg/L)	115 ± 40	130 ± 45	
Total N (mg/L)	190 ± 70	195 ± 90	
Potassium (mg/L)	120 ± 30	110 ± 30	
рН	7.3 ± 0.3	7.15 ± 0.15	
Alcalinity (mg IC/L)	133 ± 47	117 ± 30	



Exploitation

Anaerobic Membrane Bioreactor AnMBR



Innovations: Nitrogen recovery with BioElectrochemical Systems (BES)

Operating as MEC in a 5 d batch

- Recovering up to 61% of initial N present in BW (1 g N/L)
- Rate of 12.8 g N/m²/d

Innovations: Nitrogen recovery with BioElectrochemical Systems (BES)

	■N-NH ₄ ⁺ removal ■N-	recov	50% N very in the trap as liquid zer
	Reference MEC in literature	Run4Life MEC system	
Applied potential (V)	0.6-2.12 ^{1,2}	0.2	
Current density (A/m ²)	1.89-30 ^{1,2}	2.78	
N-NH₄ ⁺ removal efficiency (%)	34.3-51 ¹	81	
N-NH₄ ⁺ recovery efficiency (%)	79-94 ²	60	
Energy consumption	6.04-20.5 kWh per kg of nitrogen removed ^{3,4}	 1.61 kWh per kg of nitrog removed⁴ 2.24 kWh per kg of nitrog recovered⁴ 	>50% reduction

Pot and field fertilizer tests

Nicolás Morales Pereira Run4Life Project Manager <u>Nicolas.Morales.pereira@fcc.es</u>

Hamse Kjerstadius, Development engineer NSVA hamse.kjerstadius@nsva.se

Miriam van Eekert, Wageningen University <u>miriam.vaneekert@wur.nl</u>

Paraschos Chatzopoulos R&D Process Engineer Desah BV <u>P.Chatzopoulos@desah.nl</u>

Lieven Demolder Clean Energy Innovative Projects CVBA *lieven.demolder@cleanenergyinvest.be*

Daniel Todt <u>dt@ecomotive.no</u>

Eduard Borràs Camps PhD Senior Researcher. <u>eborras@leitat.org</u>

www.run4life-project.eu

in www.linkedin.com/in/run4life-project

🝸 twitter.com/RUN4LIFE_H2020

